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Summary

The scalar form of the approximate factorization method has been used to develop a new
code for the solution of three-dimensional internal laminar and turbulent compressible flows. Tile

Navier-Stokes equations in their Reynolds-averaged form are iterated in time until a steady
solution is reached. Evidence is given to the implicit and explicit artificial damping schemes that

proved to be particularly efficient in speeding up convergence and enhancing the algorithm
robustness. A conservative treatment of these terms at domain boundaries is proposed in order to

avoid undesired mass and/or momentum artificial fluxes. Turbulence effects are accounted for by

the zero-equation Baldwin-Lomax turbulence model and the q-w two-equation model. For tile

first, an investigation on the model behavior in the case of multiple boundaries is performed. The

flow in a developing S-duct is then solved in tile laminar regime at Reynolds number (Re) 790
and in the turbulent regime at Re=40.000 using the Baldwin-Lomax model. The Stanitz elbow is

then solved by using an inviscid version of the same code at Minlet=0.4. Grid dependence and

convergence rate are investigated showing that for this solver the implicit damping scheme may
play a critical role for convergence characteristics. The same flow at Re=2.5.106 is solved with
the Baldwin-Lomax and the q-w models. Both approaches show satisfactory agreement with

experiments, although the q-w model is slightly more accurate.

Chapter 1

INTRODUCTION

With the advent of more and more powerful supercomputers, the numerical solution of

three-diulensional turbulent flows has become possible (ref. 1). Although it is well known that

lower order turbulence closures fail to reproduce secondary motions of Prandtl's second kind

(turl)utence driven), they normally succeed in predicting secondary flows of the first, kind (pressure

* Work funded under Space Act Agreement C-99066-G; on leave from tile University of Florence, Italy.



driven). Therefore, for many complex configurations it has been possible to obtain fairly accurate

results with zero and two-equation turbulence models (ref. 2) with a reasonable prediction of

pressure-driven secondary flows.

For three-dimensional blade-passage flows, a correct prediction of the wake behavior has

been obtained by Yokota (ref. 3) by means of the standard high-Reynolds-number form of the k-_

two-equation model with the wall function approach. However the zero-equation model

implemented in reference 3 did not give a satisfactory depiction of the flow in the wake region.

For the prediction of blade pressure distribution, the Baldwin-Lomax (ref. 4) zero-equation

turbulence model was found to give accurate results in several flow configurations (ref. 5) despite

the low convergence rate. For incompressible internal flows with no separation, good results [lave

been obtained by Towne (ref. 6) with a zero-equation turbulence model and a parabolized Navier-

Stokes solver. Still, for practical flow configurations, it is necessary to face quite long computiug
times mainly because of tile large number of points usually required for a detailed description of

the flow field. Moreover, I]le non-linearities associated with Hearly all the turbuh'nce models can

play a significant role in slowing down the convergence rate to the steady state solution. This

behavior is independent of the implicit or explicit nature of the flow solver and is intrinsic to the

turbulence models (zero- or two-equation.)

In two dimensions, a wide variety of flow conditions have been accurately solved by means
of low-Reynolds-number forms of the k-c model in which the effect of laminar viscosity is

explicitly accounted for (see refs. 7-9). In nearly all the flow conditions investigated, these forms

proved to be more accurate than the standard high-Re formulation, provided that a sufficient

number of grid points are located inside the viscous and buffer layers; in fact, secondary motions

and losses are mainly driven by what happens close to walls so that a correct description of this

flow region is crucial for an accurate simulation of the flow pattern. Rodi (ref. 9) found that the

use of the low-Reynolds-number forms of the k-_ model could give the prediction of secondary
flows normally lost with the high-Reynolds-number form. Unfortunately, the first author (ref. 7),

found sonic of these forms extremely stiff from a numerical point of view. The stiffness w_L_

mainly caused by the low-Reynolds-number effect terms in which exponential functions are

introduced to model the wall effects. From this standpoint, it appeared worthwhile investigaling

some features of the turbulence model for internal turbulent flows by using an implicit algorithm.

Since complex flow patterns, such as separation and dominant viscous effects, are expected in

internal flows, the implicit approach was selected to increase the robustness and convergence rate

of the numerical procedure when zero- and two-equation turbulence models were used.

Chapter 2

DESCRIPTION OF THE ALGORITHM

2.1 - Navier-Stokes Equations

The Boussinesq hyt)othesis allows relating the turbulent shear stresses to the mean strains

via the so-called "eddy viscosity" so that, under this assunlption, the three-dimensional

I{eynoltls-average(I Navier-Stokes (N-S) equations can be written in divergence form and,
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subsequently, transformed from the Cartesian coordinate system (x,y,z) to the generalized

curvilinear coordinate system _,r/,(. The resulting set of equations can be written in vector form

as follows:

a_ OE O_ 0_, OEv OFv OGv
o-_+_+_+_ = o---(+-_ -+ o_

where the flux vectors are

(2.1)

_=j-1 pV

pW

E___J -1

pU

pU U + ,_xP

pV U + _yp

pW U + _zP

U(eTp)

p:j-1

pV

pU V + qxP

pV V + rlyp

pW V + 71zp

V(e+p)
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U, V, W are the unsealed contravariant velocities defined as follows:

U = _xU + _yV + _zW

V = OxU + r/yV + r/zW

W= (xU + (yV + (zW

The shear stresses in three dimensions are

TXX _-_

Tyy ----

TZZ

[40U 2(OV +OW'_'_

tt {40V 2/'OU+OW'_'_

It {40w 2(OU ,OV

. {ou.ov_

{OU , OW_
_xz= rzx = Itefft_*-OT)

, (ov±ow)_yz= _zy= ._ff_-ff_-_-

and

1 Oa 2
Ee = Urxx -,I- Vrxy q- Wrxz -F Ite(7_l ) Ox

l Oa 2
F e -- Uryx -I--Vryy + Wry z -I- Ite(7_l ) Oy

1 Oa 2
Ge = Urzx + Vrzy + Wrzz + Pe(7_l ) Oz

in which the following definition for the x, as well as for y and z Cartesian derivatives, holds:

ox£+(x 

In this set of equations, p is the fluid density, p is the static pressure, e is the total energy

per unit volume, a is the sound speed, and (U,V,W) are the Cartesian components of the velocity
vector. According to the Boussincsq assumption, the diffusion coefficients for momentum and

energy are defined as follows

Itl +Itt

Iteff = UI + Itt and Ith = Pr--_ l)rt



in which /JI is the laminar viscosity that was considered independent of the static temperature,

and Pt is the turbulent viscosity obtained from the turbulence model. In this set of calculations,

the turbulent Prandtl number Pr t was set equal to 0.90 and the laminar Prandtl number Pq was
0.72. The relation between static pressure and total energy is obtained through the equation of

state for a perfect gas that yields

U2+V2+W 2
p=(')'-1) (e-p 2 )

in which T=l.4 is the ratio of specific heat capacities for air.

2.1.1 - Metric relations

The metrics are usually obtained from a chain rule expansion of x(, Xr/, x_, y(, Y11, Y(, z(,
zr/, z(. The following definitions of the metric relations hold:

,_x = J (Yr/zi-Y (z,I) ; (y = J (zqx_.-Z(Xr/) ; (y = J (y( xr/-yr/ x()

'Ix-- J (z(y(_-y_ z_) ; r/y =J (x( z(_-x(, z() ; 'lz =J (Y(X(i-xs_ Y_)

qx = J (Y_ zr/-z(yT/) ; (_y = J (xr/ z c-x¢ Zr/) ; (_z = J (x_ Yr/-y(x,/)

and the jacobian of the coordinate transformation is given by

j-1 = x(yr/z( + x(_y(z o + xqy(z( - x(y(zr} - xr/y(z( - x(yr/z(

The flux vectors are discretized by using centered finite differences. When the centered

discretization is used for the metrics, it can be shown that in three dimensions the metric

invariants are not satisfied (ref. 10). This may result in large discretization error. However, it is

possible to satisfy the invariants by a simple averaging technique that gives metrics similar to

those computed by a finite volume method. For example, (x is computed as

in which X is a central average operator. This averaging process was found to ensure better mass

conservation properties in the present calculations, especially for highly stretched grids.

2.1.2 - Nondimensionalization

Since the solver is sl)ecificalty dcsigned to coml)ute internal flows, thc sel of equations is

nondimensionalizcd with respcct to thc total quantities in the inlet section, indicated with
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subscript01.

U- U V= v W= w a

e P _P-P

= a021/7 ; P ="o-5 ;p = p01 ; _ =_

Following this nondimensionalization, the flow Reynolds number (Re) is defined as

Re = (R_'_0_01) p°IL
P

in which L is typically a characteristic dimension of the inlet section.

2.2 - Approximate Factorization; Scalar Form

The approximate factorization method first proposed by Beam and Warming (ref. 11) splits
an n-dimensional operator into the product of n one-dimensional operators. This technique

provides a strong link between the equations insofar as they are solved fully coupled. The main
drawback to this method lies in the necessity of time-consunling block tri- or pentadiagonal

matrix inversion. This problem becomes more evident in three dimensions where the coupled

solution yields a 5x5 block tridiagonal matrix. In order to make this algorithm more efficient and

still maintain its strong implicit nature, Pulliam (refs. 10 and 12) proposed a scalar form of the

approximate factorization. The form of the standard algorithm in three dimensions can be written

as follows:

[ I+OAt(6_A- 6}Av)]*[ l+OAt(br/B- 6_nv)]*[ I+OAt(6(_C- 8_Cv)]*AQ =RHS (2.2)

in which I is the identity matrix, 0 is a parameter that allows weighting the explicit-implicit

nature of the space operator (in the present calculations, since the steady state solution was

sought, 0=1 was used that _ave first-order accuracy in time), 6 is a centered difference operator,
At is the time step, AQ=Q "_+1- Qn, and Q=J Q. The convective jacobians are A, B and C; Av,

By, and Cv are the diffusive jacobians in the three directions (, r/, _; and RHS represents the
convective and diffusive fluxes defined as follows:

_0_ _oP. c_O_,
; , oO

n OEv . B OFv . c_OC'v
' ' OQ
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0-7- a_- 0-Z -_- + -- +

The jacobian matrices A, B, C, Av, By, and Cv, that can be found in Pulliam (ref. 10) are
full and require a general inversion process. Pulliam and Chaussee (ref. 12) proposed a more

efficient procedure by making some simplifications. First, the hyperbolic property of the

convective jacobians allows the diagonalization as

A = T_ A_ T_ -1 ; B= Tr/ At/ Trt-1; C= T( A_. T_ -1
(2.3)

in which T represents the eigenvector matrices, defined in (ref. 12). The eigenvalues of tile
jacobians in three dimensions, A, are given by

a¢ = D[V, V, U, V+alCx2+_y2+_z2,V-at_2+_y2+(z 2]

A,1= O IV, V, V, V+al,_2+,7_2+,Tz2,V-al,l.2+,ly2+,Tz21

A._. = D [W, W, W, i4/'-I-aJ(;x2-t-(;y2+(;z2,14/-a_(_x2+(_y2+(z 2]

(2.4)

where D stands for the main diagonal only. It is now possible to introduce 2.3 into 2.2 with tile

eigeuvalues defined in 2.4. By doing so, it is impossible to diagonalize both the convective and

diffusive jacobians since they have a totally different set of eigenvectors. By neglecting the

diffusive jacobians and assuming the eigenmatrix locally constant, equation 2.2 can be rewritten
as

TC[I+OAt(6_A_)]*N*[I+OAt(6qArl)]*P*[I+OAt(_5(A()]*T(-I*AQ=RHS (2.5)

in which the two matrices, N=T_e 1 T o and P=T;/1 T(, have the nice property of being solution

independent so that they can be _omputed only once _ref. 12). Obviously, equation 2.5 is only an

approximation of the full form but it requires only scalar tri- or pentadiagonal matrix inversion

since the h matrices are diagonal; this implies a reduction of nearly 50 percent of the operations
required by the standard algorithm. We note that, even though the interior domain is solved

implicitly, the boundary conditions are imposed in a fully explicit manner. This was done setting

AQ=0 at the domain boundaries during the implicit sweeps.

2.3 - Local Time Stepping

Since the steady state solution is sought, the following local time-stepping formula based on
the approximate constant CFL condition is introduced, in which the contribution of the diffusive
ternls is accounted for as follows:
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At_ = IUl+a I_2+ /_2 + _2 + /Left Re-1 (_2 + _2 + _2)

At o IVl+a_02+02+rlz 2 +_'e.

At C = IWl + a IC2 + C_ + Cz2 + t_en Re-1 ((2 + Cy2+ C2)

CFL
At =

At_ + Atr I + At_

2.4 - Implicit Treatment of Diffusive Terms

For inviscid flows, the only assumption made in deriving the algorithm is that the

differentiation of the eigenmatrices is neglected in 2.5. Additionally, when solving the N-S

equations, the jaeobians of the diffusive terms are normally assumed to be negligible. This does

not cause any stability or convergence problems for external flows where the diffusion-dominated

region is small and restricted to a limited part of the computational domain. But this
simplification may cause troubles for internal flows where the diffusion-dominated region can be

large. According to this, for internal flows it is convenient to introduce an approximation of tile

eigenvalues of the diffusive jacobian and put it into equation 2.5. Two forms of this

approximation have been considered.

• Pulliam's Approximation:

Pulliam (ref. 10) proposes an approximate form of the diffusive jacobian eigenvalues that

was obtained by intense numerical testing. This form is

A_ v : (p _teff Re_ 1 (_x2Jr_y2jC_urz2) j-l) . D[1,1,1,1,1]

A0 v -- (p 14elf Re_l (_x2+rly2+r}z 2) j-l) . D[1,1,1,1,1]

A(:v = (P _eff Re-1 ((_X2"t-(Y2-t"(;Z2) ,]-1). D[1,1,1,1,1] (2.6)

In the present set of calculations it was found convenient not to weight the eigenvalues with the

jacobian of the coordinate transformation j-1. These expressions are included on the implicit side

of 2.5. For instance, the _ direction implicit operator reads

- 6_A_) ][ I + O At (6_ A_ 2 v

• Present Approximation:

TILe exact form of the diffusive jacobians can be computed from tile related flux vectors. For

9



the three sweeps, the main diagonal of such a matrix may be conveniently approximated as

in which

A_ v = D [O,a¢,a¢,aE,7 pr-lo¢]

AT/v = D [0,ar/,ar/,Or/,7 pr-lo_/]

A( v = D [O,ai,a(,a(,7 Pr-la(]

0(p-l J)
a_ = PeU Re-1 j-1 (_x2+_y2+G2) 0_

O(p-lJ)
Or/ = ,Ueff Re -1 j-1 (T/x2+r/y2+r/z 2) Or/

0(p-l J)

ct( : Pelf Re-1 3-1 ((x2+(y2+(z2) O(

(2.7)

Regarding the extradiagonal terms as negligible, the previous diagonal matrices are a good

approximation of the diffusive term jacobians and can be put into the implicit side of 2.5. For

instance, the _ direction implicit operator reads

[I+ O At (6_ A_- 6_A_)]

in which the diffusive terms contribution is approximated as a first-order derivative.

It is possible to prove that the first approximation increases the main diagonal dominance

by summing to it an extra term, while in the second approximation an artificial term is

subtracted from the off diagonal components while leaving the main diagonal unchanged. A

comparison of the two approaches, 2.6 and 2.7, was performed on a simple straight channel

geometry at Re_1000, Minlet=0.3 in a laminar flow regime. For this very simple flow

configuration there were no differences in convergence rate between the two approaches and it was

also possible to drop the diffusive terms on the implicit side without altering convergence.

Differences started to appear at Re=50 because of the highly diffusive nature of the flow. Figure

l(a) shows the best convergence history of the algorithm without any implicit treatment of the

diffusive terms that was obtained at CFL=5 (the lower curve refers to the averaged residuals,

while the upper one to the maximum). Figures l(b) and l(c) refer to equations 2.6 and 2.7. There

are no appreciable differences between the two convergence rates obtained at CFL=10 since both

the curves show nearly the same slope. The same result could be obtained if the Baldwin-Lomax

turbulence model were used. At least for this class of flows, the approximate implicit treatment of

diffusive terms given by equation 2.7 did not prove to be nmrc efficient than 2.6. Further testing

is necessary ill order to verify this result at higher Mach nulnbers when differences in the
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convergence between 2.6 and 2.7 may appear since the density derivatives do not tend to vanish

for compressible flows as they do for incompressible ones.

2.5 - Addition of Explicit and Implicit Damping

When using centered finite differences, it is necessary to introduce an artificial damping
scheme in order to prevent odd-even velocity-pressure decoupling that occurs whenever the local

Peeler number exceeds two in large gradients regions. Moreover, the three-dimensional

approximate factorization method can be proved to be unconditionally unstable since, when

performing a linear stability analysis, one of the amplification factors is found to be slightly larger
than one. This weak instability can be easily overcome by using an artificial damping scheme.

From the two-dimensional version of the approximate factorization, it is also known that fourth-

order artificial damping is necessary to damp the numerical modes associated with tile highest

frequencies. Following the basic guideline given by Jameson et al. (ref. 13) and Pulliam (ref. 14) a

blended implicit-explicit second- plus fourth-order nonlinear damping scheme was introduced in

the present solver.

• Explicit Second- and Fourth-Order Damping:

In the original formulation, the artificial damping is simply equally scaled according to the

local At in the three space directions. This could be done mainly because the damping scheme has

been first applied to inviscid flows. For viscous flow calculations, Pulliam (ref. 10) found it

convenient to scale the damping terms according to the directional spectral radius a,. The scheme

for the _ direction sweep yields to

D c(2)'_-u_'-'(43= 5_ (aJ)i+l,j,k+( °'J )id,k wi,j,k6_ (Qi,j,k) - w .... (2.s)

in which tile weights (2) and w (4) are defined as

Pi+l,j,k - 2pi,j,k + Pi-l,j,k]

Ti'j'k = ]Pi+l,j,k + 2pi,j,k + Pi-l,j,k]

(2) = _(2)¢oi,j,k At max(Ti_l,j, k, Ti,j, k, Ti4.1,j, k)

(2) ,
(4) = rnax(0., 9t (4) At - %,j,k)_i,j, k

and the unscaled spectral radius is defined as

(2.9)

O'i,j, k : Ivl + a + +
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Since the present set of calculations has been performed for shock-free flow fields, the shock

sensor term defined in 2.9 was switched off, taking always T i j k" Nevertheless, this modification
does not really affect the damping scheme since the second-order term is active only in presence of

shocks. Actually, this scheme gives only fourth-order damping in smooth shock-free flow fields _o
(2)

that in most of the calculations f2 was set equal to zero whereas the fourth-order weight, Q(4),
ranges from 1/16 to 1/128. Equation 2.8 is then added to the RHS of 2.5

_(2) D_4))

* Implicit Second- or Fourth-Order Damping:

To enhance the algorithm stability and convergence rate, it is helpful to include the artificial

damping terms on the implicit side. For both the second- and fourth-order damping, the implicit
treatment augments the diagonal dominance of the scalar system with a beneficial effect on the

convergence rate. As was pointed out by Pulliam (ref. 10), there is a stability limit for the

weights that can be used for the artificial damping terms. This limit is actually connected to the
magnitude of the amplification factor of the scheme modified with the artificial terms. To obtain

the best convergence rates, the implicit damping had to be the exact jacobian of the explicit

counterpart added to the right-hand side. If the second-order damping is treated implicitly,

equation 2.5 must be modified to itlclude the added implicit terms. For instance, the _ sweep
implicit side will be

This form maintains the tridiagonal nature of the jacobian matrix.
(2.1o)

When the fourth-order damping is treated implicitly, the differentiation of the jacobian
matrix gives a scalar pentadiagonal system that, for the _ sweep, can be written as

-1 -1 (4) 3

(2.]1)

A brief set of tests on a straight channel geometry proved that the fourth-order implicit damping

(eq. 2.11) could bring a large gain in convergence rate with respect to the second-order (eq. 2.10).

For a straight three-dimensional channel with approximately 104 points with an inlet-section-

width to channel-length ratio of 15, typical of internal flow geometries, the tridiagonal solver

associated with equation 2.10 could be run at CFL=2, which gives the convergence history shown

in figure 2(a), while the pentadiagonal solver associated with equation 2.11 was shown to be much

more robust and gave the much higher convergence rate shown in figure 2(b) with CFL=10.

Despite a 25 t)ercent increase in computational time to invert the pentadiagonal matrix with
respect to the three-diagonal one, the implict fourth-order option proved to be much faster and
more robust, ;m(t wa.s retained in all the calculations.
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• Wall Treatment of Artificial Damping:

It is well known that any kind of artificial damping term introduces an error that has to be

minimized in order not to affect the solution heavily. Among the various approaches that can be

found in the literature, the nonlinear damping formulation proposed by Jameson et al. (ref. 13)

ensures that the second-order terms are introduced only at shocks while keeping the fourth-order

in the smooth region of the computational domain. However, it is possible to prove that, if the

presence of the boundaries is not properly accounted for when introducing the artificial terms,
nonzero momentum and mass fluxes can be produced at the boundaries. This fact can be easily

seen by considering figures 3(a) and (b). Figure 3(a) shows the fourth-order damping weights

applied at every single point i for the _ direction. The fourth-order difference stencil used here is

5_(Qi,j,k ) ----Qi_2,j,k-4 Qi_l,j,k + 6 Qi,j,k-4 Qi+l,j,k-'F Qi-l-2j,k

The fourth-order damping is normally switched off at i=1 and /=2 so that no special treatment at

the wall is required. Figure 3(a) shows that in doing so the sum of the fourth-order damping

weights for every location i is zero only in the internal flow field for i>5. This ensures that no net
fluxes are added in the internal domain only, while the sum of the artificial damping weights

yields to nonzero values for 1<i<4. These weights actually correspond to a nonzero third-order
derivative centered at i=(2+1/2). The same procedure may be followed for the second-order

damping that is switched off at i=1 (fig. 3(b)). The sum of the weights for every location i is zero

only for i> 3. This gives a first-order derivative centered at i=1/2 that corresponds to a first-
order flux at the wall. These flux errors can be easily controlled in two dimensions by a grid

refinement in the wall proximity where high gradients are expected. In three-dimensional internal

flows we are forced to use coarser grids, and the wall boundary condition is applied on very large

surfaces with the possible result of large mass errors. To control the mentioned flux errors, a

third-order derivative, with the differencing stencil given by

6_(Qi,j.k) = -Qi_l,j,k+3 Qi.j.k-3 Qi+1,j,k+ Qi+2.j,k

was added at i=2 to balance the fourth-order damping weight. The procedure was followed to

balance the second-order damping at the wall where a first-order derivative, with the differencing

stencil given by

6_(Qij,k) = -Qi-l,j,k + Qi,j,k

was added at i=2.

13



Chapter 3

TURBULENCE MODELS

3.1 - Baldwin-Lomax for Multiple Boundaries

The standard version of the Baldwin-Lomax (ref. 4) zero-equation turbulence model was

implemented here. This two-layer model divides the flow field into an inner layer close to the wall

(in which viscous effects are dominant) and an outer layer. The two layers are governed by the

following set of equations and constants.

• Inner Layer:

/_t,inner = Re p 12 Iwl

I=KyD

D = (1 - exp (- y+/A+))

y+ = y _Re Wma x

in which ft is the vorticity, D is the Van Driest damping function, y is the wall distance and

K=0.41 is the Von Karman constant.

• Outer Layer:

The outer viscosity is applied from the point at which /it,inner = #t,outer;

_t,outer = Re p K c Ccp Fwake Fkleb(Y )

in which Kc=0.0168 is the Clauser constant and Ccp=l.6 is an empirical constant; and

2
Fwake=min(YmaxFmax ; 0.25 YmaxUdifFmax)

in which Fmax, Udi f and Fkleb are given by

F(y) = y Iwl D

u_f = (_u2+v2+w 2 )max- ('_tJ2+V2+W 2 )m_.

1
Fkleb = 1 + 5.5 (Ckleb y / Ymax)

where Ckleb=0.3, and Ymax is the wall distance at which F(y) is maximum.
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This algebraic turbulence model was originally developed for a single boundary layer, but in
three-dimensional internal flows the presence of multiple boundaries causes the interaction of

more than one boundary layer. While the inner, or viscous, layer is driven by what happens on

the closest wall only, for the outer layer an averaging procedure is necessary to account for the

various wall effects. In the present set of calculations, three approaches have been examined to

wccount for the presence of more than one boundary layer.

• Wall Treatment 1:

Only the geometrically closest wall is considered for computing the outer viscosity without

any averaging.

• Wall Treatment 2:

The inner layers are driven by the closest wall only, while the viscosity in the outer layer is

computed with a simple weighted average according to the inverse of each wall distance as follows

W

W k--W_w /

W

where Ww is the wall distance, w is the wall number, and N is number of walls present in a cross

section.

• Wall Treatment 3:

If only one boundary layer is present, the Van Driest damping succeeds in modeling the wall

effect. Starting from this standpoint, the inner layer viscosities are computed by using only the
closest wall contribution, while the viscosity in the outer layer is computed as a simple weighted

average according to the inverse of the value of the Van Driest damping expression for each wall.

3.2 - q-w Two-Equation Model

In a previous investigation, Michelassi (ref. 7) found that the low Reynolds number forms of

the two-equation models, such as k-e, could give an accurate prediction of two-dimensional

incompressible separated flows. Unfortunately, these forms were found to be numerically stiff,

mainly because of the correction terms introduced to model the low Reynolds effects that

necessitate a strong mesh refinement in the sublayer. Furthermore, an initial profile for the

turbulent quantities must be specified consistently to start the calculations. A first attempt to

implement the Chien and the Rodi two-layer low Reynolds number forms of the k-e model did

not bring any converged result mainly because of difficulties in specifying both the mesh
refinement and initial profiles for complex three-dimensional flows. Coakley (ref. 15),

reassembling the Jones and Launder low Reynolds number form of the k-e model, proposed tile q-

two-equation model, in which the effect of molecular viscosity is directly modeled. This
formulation ensured a better numerical behavior as compared with other low Reynolds number

formulations. This model, rewritten in our notation, is
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D=l_e -aR

R-- Repqy

0U i

Pd = 0x---_..

(OU i OUj OU i

p = #t S _2 k Pd

C 1 = 0.405 D + 0.045

C# =0.09 ; C 2 = 0.92 ;a=0.0065; aq= 1.0; a e = 1.3

The turbulent viscosity is computed as

pk
/zt = Re C_ D -_-

The two transported quantities, q and w, are related to the more familiar k and e via the

following relations:

kl/2q= ; w=e/k (3.2)

It is important to observe that e, appearing in equation 3.2, is the isotropic part of the

dissipation rate. This quantity does not account for any nonisotropic effect (for example, the

presence of a wall) and tends to zero on solid boundaries. (Conversely, the total dissipation rate
tends to a finite value related to the wall shear stress.) This choice allows use of w as an unknown

since, by assuming that both k and e are going to zero at the wall with the same slope, w tends to

a finite value.

3.2.1 - q-w Solution

The two transport equations for q and w are implicitly solved with the same algorithm

given in equation 2.2. The two equations are solved in a sequential manner and decoupled from
the flow variables mainly because the coupling is provided only by the diffusive terms coefficients
and the sink and source terms. Due to this choice, the scalar tridiagonai algorithm was

implemented for the turbulence model solution. The only difference with respect to the solution of

the N-S equations is the presence of the sink-source vector H. This term can be included in the

Lhree sweeps:
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t c<+ =RHS
(3.3)

where the same definitions given for equation 2.2 hold with only the addition of tile jacobian of

the sink and source terms, Hj, that is weighted in three sweeps according to cE, cq, c(

(cf+cr/+c(= 1). This jacobian is computed by neglecting the contribution of the'dampin_
function D; and for the two q and w equations reads

H_- 0 H q = l C DS I Pd w

Hff = 0 H w 2 CI D Pd C 2 2w
o(pj-1 .,.,)- -_

In place of their exact form, Coakley proposes an approximation of the jacobians based on
the turbulent viscosities that should ensure the dominance of the main diagonal. Figure 4 shows

the comparison of the convergence rates of every single variable obtained without any sink or

source terms jacobian, with the exact jacobian, and with Coakley's approximation in a typical

internal flow geometry. Surprisingly, there is no big gain in introducing the jacobian in the

implicit side of the operator The choice of the sweeps in which the two jacobians H9 and Hj are• j
introduced is not important. The error introduced in the approximate factorization of the implicit
side of 3.3 increases roughly by a factor proportional to H: when introducing the jacobian in the

three sweeps, thereby choosing c£--crl=c_=l/3. This _aas only a weak influence on the
convergence rate. Nevertheless, in the present calculations the best convergence rates have been

typically obtained by using cf=0, cq=0.5, and c_=0.5, where _ is the main flow direction and
r],( are the fine grid directions:

While physical evidence shows that the turbulent kinetic energy k is zero at solid walls, the

boundary condition for e, and consequently w, is less evident. For the q-w model, Coakley (ref.

15) found it convenient to impose a zero-normal derivative at the wall; this condition was

retained in the present calculations.
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Chapter 4

RESULTS

4.1 - Incompressible S-duct

A first validation of the code was performed by computing the flow in an S-duct with a

constant area cross section. The measurements (ref. 16) were taken for an incompressible fluid

(water). The S-duct was given by two 22.5 degree bends with a 4-cm hydraulic diameter and 28-

cm mean radius of curvature. This geometry was regarded as an interesting test since flow

passages with similar shapes are often used to redirect the flow for air intakes in aeronautical

engines. The efficiency of such ducts may be heavily affected by the presence of secondary flows so

that the ability of a code to detect secondary velocities is essential for a proper depiction of the

flow pattern.

A sketch of the flow domain is shown in figure 5. Since the geometry and the flow were

symmetric with respect to the x-r plane, it was possible to study only one-half of the duct

imposing a symmetry boundary condition on the same plane. For the laminar flow regime, the

Reynolds number, Re, based on the inlet bulk velocity, Ub, and hydraulic radius was 790. The

grids employed for this calculation are shown in figures 6(a) and (b). The coarser grid (fig. 6(a))

has 70x29x15 points with a ratio between two consecutive grid cells in the cross-flow directions

of 1.1 while the refined one (figure 6(b)) has 80x59x30 points with the same stretching ratio in

the cross-flow plane. The fluid ndopted in the experiments was water so that, in order to have

negligible compressibility effects, the isentropic Math number was set equal to 0.1 (that gives the

inlet total pressure, outlet static pressure ratio) to ensure minor density changes.

The flow pattern and the growth of the secondary motions are mainly pressure-driven

because of the very smooth-bending walls that cause no flow separation. Still, this kind of flow

necessitates a very accurate prediction of the boundary layer, even in the laminar regime,

otherwise the secondary flows may be incorrectly predicted or completely lost. Figure 7(a) shows

the measured (circles) and computed velocity profiles with the two grids mentioned above for the
five sections, indicated in figure 5, on the symmetry plane reported in the experiments. The slight

discrepancies in the computed velocities with the two grids at section 1, where the double-S starts,

may be attributed to the thinner boundary layer predicted with the refined grid that produced a

flatter velocity profile. Nevertheless, the agreement with experiments is fairly good. The

agreement does not deteriorate for sections 2, 3, and 4 in either the coarse or refined grids. Section

5 clearly shows that while the secondary motions could not be predicted by the coarse grid, they

are fairly well reproduced by the refined one. This behavior is thought to be independent of the

grid points in the main flow direction (as will be demonstrated in a further test) in which only l0

points are added in the refined grid, and is closely related to the poor resolution of the boundary
layer provided by the coarse grid in which the cross-flow momentum diffusion is clearly
overestimated.

Figure 7(b) shows the velocity profiles for the midspan section (r=l/2) at the same five

sections. Basically the same comments made for the symmetry plane could be repeated here for

the first three sections, while on sections 4 and 5, agreement deteriorates in the proximity of the

symmetry plane. This may Ire attributed not only to the poor grid quality close to the symmetry
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plane, but also to the fact that in the calculations a zero gradient condition was imposed in the

direction normal to that plane, while experiments show that for section 4 the velocity gradient is

far from being zero on the same plane. The typical computed secondary motion pattern at the
exit of the second bend is shown in figure 7(c). The complex flow pattern exhibits two

counterrotating vortices in the proximity of the two curved walls.

Nearly 1500 iterations were necessary to reach an averaged residual of the order of 10 -5 on

the refined grid, while typically less than half that number of iterations were necessary to obtain

the same residual with the coarser grid. These calculations were performed with an early version
of the code where only the second-order implicit damping was implemented, so that the slow

convergence rate may be attributed to both the small Mach number and to the small CFL
number that could not exceed 2 without encountering stability problems.

The turbulent flow regime was run at the experimental condition of Re=40.000. For this

calculation, it was necessary to provide a more stretched grid at the wall, so that the 80x59x30

grid was reassembled with a point expansion ratio in the cross-flow directions equal to 1.3. This

provided the necessarypoint clusteringat the boundaries to describethe thin boundary layerand

allowed placingthe firstpoint at the wall at y+_2. For thistestcase,the Baldwin-Lomax model

was implemented with wall treatment number 1.(See the sectionon Baldwin-Lomax for multiple

boundaries.)

Figure 8(a) shows the set of measured and computed velocity profiles on the symmetry
plane for the same five cross sections given in figure 5. For this flow configuration, the agreement

is reasonably good, especially at cross sections 4 and 5. In these sections the pressure gradients
induce a strong secondary motion that seems to be correctly predicted by the present solver

insofar as the agreement with measurements does not deteriorate as the second bend exit is

approached and the secondary velocities reach their maximum. The momentum transfer to the

external part of the second bend, particularly evident in sections 4 end 5, is well reproduced since

the computed velocity profile asymmetry seems to be in close agreement with experiments.

Figure 8(b) shows the computed and measured velocities on the midspan plane along the
duct. The agreement is again good for the five sections and better than that found for the laminar

flow regime mainly because the measured velocity profiles exhibit a zero-gradient on the

symmetry plane that is correctly modeled by the symmetry condition imposed on the x-r plane.

Still, at sections 3 and 4, the kink in the velocity profile close to the wall is not correctly

predicted.

The static pressure coefficient in the main flow direction, defined as

Cp P- Pinlet
- I

_pug

is shown figure in 8(c) at three different locations (z=0,r=0), (z=0,r=l), and (r=l/2,z=l/2). Here

the agreement is generally good. The pressure trend is correctly predicted together with the head
loss.

Figure 8(d) shows the convergence history obtained with CFL_-2. For this calculation, tile
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same early version of the code mentioned above was used. The solid upper line refers to the
maximum residual while the dashed line refers to the averaged residual; the spikes present in the

first curve correspond to the updating of the turbulent viscosity performed every five iterations. It
is remarkable that the pressure distribution did not change after the first 500 iterations, while to

get the correct velocity profiles, it was found necessary to reach a residual of the order of 10 -s to

10-6"

4.2- Stanitz Elbow

The flow in the accelerating rectangular elbow with 90 degree turning and the variable cross

section described by Stanitz (ref. 17) has been computed with an inviscid version of the code and

with both the Baldwin-Lomax and q-_ turbulence models. This test case was selected because it

provides a good set of measurements, including wall pressure distribution and visualization of

secondary flows at the elbow exit section. The shape of tile elbow was analytically computed by

Stanitz (ref. 17) to give no separation with a strong area reduction and a specified pressure
distribution on the side wall under incompressible flow conditions. A sketch of the experimental

setup is shown in figure 9. Both the flow and the elbow geometry are symmetric with respect to

the x-y midspan plane, thereby allowing a zero normal gradient condition. Among the various
flow conditions investigated in reference 17, the one with Mexit=0.4 and with no spoiler at tile

duct inlet with a thin initial boundary layer was selected.

4.2.1 - Inviscid Calculations

The first set of tests was performed with an inviscid version of tile code. The convergence

characteristics of the scalar form of the approximate factorization could be tested for inviscid

calculations where the necessity of accounting for the diffusive terms on the implicit side of

equation 2.5 drops. Only the pressure distribution on the walls of the elbow was compared with
measurements in this set of calculations; no attempt was made to specify an exl)erimental inlet

profile of total pressure that was kept flat. The inlet boundary condition was specified by
extrapolating the Riematm invariant from the first section inside the duct (ref. 18). Two grids
were used: a 25×15xll and a 50x15xll with constant grid spacing in the cross-flow directions.

The grid point locations in the streamwise direction were made to coincide with the points

supplied by Stanitz (ref. 17) for the description of the elbow geometry, with the addition of three

sections at the outlet to allow using a zero gradient condition.

Figures 10(a) and (b) show the qualitative static pressure and Mach number isolines on the

symmetry plane of the elbow. The small wiggles visible at the domain exit" are due to(2)the very
small fourth-order damping weight that was set equal to _(4)=1/256, together with f_ -0. The

small value of the fourth-order damping weight is allowed by the very coarse grid in the cross-

flow direction that automatically introduced a numerical diffusion. Despite the very coarse grids

implemented here, the static pressure distribution Ps, defined as

P- Pexit
l)s = Ptotal- l)exit
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and shown in figures ll(a) and (b), reveals fairly good agreement with experiments. While the

pressure drop position is located correctly for the two grids on both the side and symmetry walls,
the kink in the static pressure distribution on the suction surface at the side wall could not be

reproduced since it was caused by the presence of secondary flows. The pressure distribution

appears to be independent of secondary flows induced by viscous effects until the first part of the
bend is reached. The local pressure rise located at S=2, where S is the streamwise coordinate

along the centerline, is introduced by the growth of secondary velocities and is totally lost by the

inviscid solver. The solution proved also to be fairly grid-independent, at least to the grid
refinement in the main flow direction. No additional tests were performed to verify the influence
of the point distribution in the cross-stream direction.

The implicit treatment of second- and fourth-order artificial damping was compared by

using the 50x15x11 grid. Figure 12 shows the comparison between the two implicit damping
schemes. The solid line refers to the second-order implicit damping with f_(2)=1/4, while the

(4) 9dashed line refers to the fourth-order implicit option with f_ =1/.56. The gain in convergence
rate is remarkable; in fact, the fourth-order solver could be run at CFL=10 while the second-order

one could not be run at CFL_>5. Any luther increase of the artificial damping weights gave slower
convergence histories. Unfortunately, the same convergence rate is not obtainable for viscous

calculations because of the strong point clustering and viscous effects that are not exactly
accounted for on the implicit side of the operator.

4.2.'2 - Viscous Calculations

The viscous calculations in the turbulent flow regime were performed on the five grids

summarized in table I. The use of various point clusterings allowed a comprehensive investigation

into the mesh dependence of the calculations. With this set of grids, it was possible to verify the

influence of the grid point numbers in the main flow direction (with 51 or 99 points) and the
cross-flow direction (with 31x21 and 41x31 points) with expansion ratios of 1.2 and 1.3. The

refined grid (number 5) shown in figure 13 adopts the same point distributions in the main flow

direction that were used for the refined grid in the inviscid calculations, and allows placing the
first grid point at the wall at y+_l. The Reynolds number, based on the total conditions at the
inlet section, is approximately 2.5. l0 +6.

These calculations were mainly aimed at the proper prediction of the wall pressure
distribution that is heavily affected by the growth of secondary velocities. The choice of the

experimental spoilerless configuration allowed comparing the turbulence models for a very thin

boundary layer that required a heavy point stretching at the wall. Regarding the inlet boundary

condition, in the Baldwin-Lomax model the inlet turbulent viscosity was extrapolated from inside
the domain, and in the q-w model a flat turbulent kinetic energy profile with various turbulence

levels was specified at the inlet section, while w was extrapolated from inside the domain.

The first set of tests concerned the Baldwin-Lomax model with the different wall treatments

mentioned in section 3.1. With the experimental total pressure profile specified at the inlet

section, the computed static pressure profiles are compared with the measurements in figure 14.
The plots refer to the static pressure distribution in the section corners on the side wall and the

symmetry plane. It is evident that the way the outer viscosity is computed may play a significant

role in the correct prediction of the pressure distribution. Wall treatment number l, in which only
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the closest wall is considered, and number 2, in which the outer turbulent viscosity is weighted

according to the inverse of the wall distance, do not show large changes even if the two

approaches are considerably different. For both techniques, the agreement with experimental
results is fairly good on the pressure side of both the side wall and the symmetry plane. The

suction side on both planes shows that the static pressure is overestimated. This is probably due

to the presence of computed secondary flows that are much stronger than the experimental ones.

The computed pressure drop induced by the presence of the bend and the strong flow acceleration
is smoother than the measured one. This phenomenon is caused by high turbulent viscosities that

induce a heavy momentum diffusion in the cross-flow direction, followed by a static pressure

redistribution and growth of the boundary layer thickness. The agreement with measurements

improves with multiple wall treatment number 3. No great changes between the multiple wall
treatments are found for the pressure side of both the side wall and the symmetry plane where it

was always possible to have accurate results. Still, the pressure minimum located at S=2, where
velocities on the cross section start to develop, is better reproduced by wall treatment number 3.

This test suggests that the averaging technique based on the Van Driest damping expression for

the mixing length can give reasonable predictions. All the computations with the Baldwin-Lomax

model were performed with multiple wall treatment number 3.

The results of the mesh dependence tests for the Baldwin-Lomax model are summarized in

figure 15 where the computed static pressure distribution in the four corners of the cross sections

using different grids are compared with measurements. The pressure distribution profiles show
that there are practically no differences between the predictions obtained with grids number 1 and

3. This proves that an increment of the grid point numbers ill tile main flow direction does not

produce any gain in terms of accuracy. This is strictly connected to the boundary layer resolution
that is not improved by using grid number 3. The secondary flow growth is influenced by the low

momentum regions located close to the wall, the correct simulation of which is not ensured by the

two grids. Conversely, the implementation of grid number 2 clearly improves the accuracy of the
results. The static pressure profile on the suction side of the side wall is in better agreement with

experiments than the pressure distributions given by grids number 1 and 3. It is worthwhile
observing that the use of a more refined grid in the cross-flow direction shows that the computed

pressure minimum on the suction side is correctly located, even if its value is still overestimated,
while this local minimum, located approximately at S=2, is completely lost with the other two

grids. Nevertheless, the static pressure distribution on the symmetry plane appears to be weakly

affected by grid refinement. No further investigation was performed by varying the cross-flow

points expansion ratio.

The flow simulation with the q-w model required more tests since it has been necessary to

investigate the dependence on both the mesh refinement and on the inlet turbulence level. The use

of grids with an expansion ratio equal to 1.2 did not ensure significant improvements in results
since not enough points were located close to the wall. In order to have a reasonable definition of

the turbulent kinetic energy peak at the wall, the grid expansion ratio was fixed at 1.3. The
results of the first set of tests are summarized in figure 16 in which, by adopting the coarse grid

number 4, the inlet turbulence level was changed to verify its influence on the static pressure
distribution. When decreasing the inlet turbulence level from 5.0 to 0.1 percent, the computed

profiles progressively approach the measurements. Still, the predictions are far from the

experiments for the suction side of both the symmetry plane and the side wall. This indicates the

presence of a large momentum diffusion that is possibly caused by insufficient mesh refinement or
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too high a turbulence level, or both. Figure 17 shows the results obtained with grid number 5 and

lower turbulence levels. Figures 16 and 17 show that the refined grid with the same turbulence

level brings some improvement in the agreement with the experiments, proving that the coarser

grid was largely inadequate for this flow configuration (see, for instance, the 0.1 percent level).

The growth of the secondary flows is evident in figure 17 where the static pressure distribution

computed with the inviseid approach is compared with the results of the two-equation model
obtained with different turbulence levels.

A direct comparison of the turbulent calculations with the inviscid computation, in which

the same pressure distribution is found on both the side wall and the symmetry plane because of

the absence of secondary motions, shows large differences on the suction side only. These

differences start from S=2 where experiments deviate from the inviscid solution. The one percent

turbulence level, not reported in figure 17, appeared to bring too high a momentum diffusion.

Consequently, this level was progressively decreased from 0.5 to 0.1 percent. The static pressure

distribution on the pressure wall is mainly driven by convective phenomena, while the

distribution on the suction wall is largely influenced by diffusion processes; this is wily the

pressure side distribution is always well reproduced and is nearly independent of the inlet
turbulence level. The final result obtained with grid number 5 and a 0.1 percent turbulence level

shows a fairly good agreement with experiments on both the suction and pressure sides, and seems

to reproduce quite correctly the location and influence of secondary flows.

The predicted pressure distributions obtained by the Baidwin-Lomax model with wall

treatment number 3 and the q-_ model were very similar, but the two-equation model proved to

be marginally more accurate, especially because of the static pressure distribution on the suction

side. Figure 18 shows that the two models predict approximately the same static pressure pattern
oil the symmetry plane with nearly the same pressure drop due to the acceleration on the flow.

Still, from figure 19, where the Mach number isolines are shown on the same symmetry plane, it

is possible to observe that the zero equation model predicts a slightly thicker boundary layer than
the one predicted with the q-w. These differences start immediately after the inlet section and

become more evident as the exit section is approached. This indicates a different turbulent

viscosity distribution in the wall region. The Baldwin-Lomax model was in fact found to predict a

sharper growth of the turbulent viscosity in the wall region. Still, the two models gave
comparable values of the turbulent viscosity in the flow core. The differences in the boundary
layer thickness are evident in figure 20 where the velocities in the exit section of the channel are

plotted. While both turbulence models show the same flow pattern, the two-equation model

predicts the center of the secondary recirculation closer to the wall than that predicted by the

zero-equation model, in which the location of the center appeared to be in better agreement with

experiments. This confirms a weaker cross-flow momentum diffusion (given by the two-equation
model) as compared with the zero-equation. This is caused by the aforementioned differences in

the turbulent viscosities. It is remarkable that both formulations predict a small secondary vortex
in the wall corner of the suction and pressure walls.

An interesting qualitative comparison of the predicted and measured secondary flows is

given by figure 21. Figure 21(a) shows the experimental flow visualization by injecting a smoke
filament inside the boundary layer close to the side wall at the inlet section of a reduced model of

the channel. The low-momentum particles located well within the boundary layer are bent toward

the suction wall by the pressure gradients, while the high-momentum particles exhibit a weaker
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turning. Figure 21(b) shows the secondary flow predicted by the zero equation model, while figure

21(c) refers to the results obtained with the q-0J model. From this comparison, it is evident that

the zero-equation model predicts a smoother turning of the velocities. This is in slightly better

agreement with the experimental picture than the q-v model.

A typical total pressure loss distribution on the channel exit section is given in figure 22.

The results computed with the Baldwin-Lomax model using grids number 1 and 2 show the much

thicker boundary layer obtained with the coarser grid. The refined grid ensures a correct

description of secondary flows together with the location and magnitude of the total pressure
losses.

With the present research version of the code, 6000 sec were necessary to perform 2500

iterations with the q-_0 turbulence model with a 63.550 point grid on a CRAY-YMP
supercomputer. This ensured an overall residual of the order of 10 -6, while a reduction of

approximately 30 percent in CPU time could be obtained by using the zero-equation model. As

mentioned by Coakley (ref. 15), the q-v model was found to be remarkably insensitive to the
initial field that is specified to start the calculations for q and w. In the present tests it has always

been possible to start the model with a flat distribution of the turbulence quantities. For the

viscous calculations, it was a good practice to keep CFL_<10 together with 1/32 as a weight for

the fourth-order artificial damping. The total absence of shocks allowed for eliminating the

second-order artificial damping in all the calculations. Moreover, the aforementioned wall

treatment of the fourth-order damping ensured inlet-outlet mass errors of the order of 0.5 percent.

Concluding Remarks

The scalar form of the approximate factorization coupled with a turbulence model proved to

be suited for the solution of turbulent internal flows where diffusive terms play a dominant role.

The introduction of an approximate treatment of the diffusive terms proved to increase

convergence of the algorithm for internal flow configurations. Nevertheless, the implicit treatment

of these terms must be tested for a wider range of geometries and Reynolds numbers. The

influence of Mach number on convergence rate needs to be investigated, especially for the

proposed approximate implicit treatment of diffusive terms based on a space derivative of the
fluid density. New tests are currently being performed.

For the Stanitz elbow geometry, the Baldwin-Lomax turbulence model proved to give results

in acceptable agreement with the experiments, provided that the presence of multiple boundaries

is properly accounted for. The low Reynolds number q-_ two-equation model version investigated

here proved to be suited for three-dimensional computations and gave a satisfactory description of

the flow field with a manageable number of grid points and only a small increase in

computational time with respcct to the algebraic model.
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Table I. ° Grids for the Stanitz elbow
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Figure 1. - Convergence tests for implicit treatment of diffusive terms.
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Figure 5. - Sketch of experimental setup of S-duct.
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Figure 7(a). - Velocity profiles oil symmetry plane of S-duct for laminar flow regime.
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Figure lO(a). - Inviscid pressure isolines of Stanitz elbow.
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Figure 10(b). - hlviscid Mach number isolines of Stanitz elbow.
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Figure13.- Refined50x41x31pointgridofStanitzelbow.
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Figure 21. - Secondary flow visualization of Stanitz elbow.
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